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Abstract: (1) Predation selects for antipredator competence in prey. For fishes with parental care,
brood predators exert selection on the morphological phenotype of offspring, and also exert strong
selection pressure to promote parental care behavior of adults. (2) This review summarizes field
and lab studies on the ontogeny of antipredator competence in convict cichlids, a freshwater fish
with extended biparental care of their free-swimming young. (3) Here, data show that differences in
swimming performance between small and large young are exploited by parents when they adopt
(smaller) young. Velocity and acceleration of startle responses improves nonlinearly with body size,
increasing rapidly at a point when the skeleton rapidly ossifies from cartilage to bone, at the size
at which discrimination by adopting parents shifts, and the timing of change in the rate of change
in area protected by parents. Convict cichlids in a Nicaraguan lake population showed a similar
correlation among these traits, but these traits are delayed relative to Costa Rican fish. (4) Population
divergence is likely explained by relatively more intense brood predation in the lake, which selects
for different optima of larval antipredator competence and parental brood defense.

Keywords: predation; brood predators; parental care; diversification; skeletal ossification;
convict cichlid

1. Introduction

Predation is a major arbiter of natural selection that exerts its effects on prey evolution by pruning
variation in behavioral, ontological and morphological phenotypes of prey [1–3]. There are many
elegant demonstrations of the effects of predation through comparison of prey populations that occur
in sympatry or allopatry with predators [4]. In this paper, I summarize a series of previously published
papers on the evolutionary ecology of a freshwater fish species, the convict cichlid Amatitlania siquia,
that reveal trait divergences in larval swimming performance and parental care between populations
exposed to different levels of brood predation.

Unlike forms of parental care practiced by birds and mammals, parental fish generally do not
provision their young with food. Parental care in fishes is primarily in the form of defense of developing
embryos and newly hatched young against the threat of predators. Moreover, because adult fish are
several orders of magnitude larger than their young (unlike birds and mammals), predators of fish
larvae and young juveniles pose no threat to parents. Therefore, fish are ideal organisms for studying
the effects of predation on the evolution of parental care. Parental care itself is linked to the ontogeny
of antipredator competence of the young. There is a direct link between the vulnerability of young to
predation, the duration and intensity of care, and the allocation of resources to reproduction. Fish vary
widely in all of these traits and parental care behavior lies at the nexus of these life-history trade-offs.
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2. Study System

Convict cichlids are biparental freshwater fish endemic to Central America, ranging from Panama
to Guatemala [5]. Their taxonomic classification has been revised multiple times in recent years such
that the common name “convict cichlid” is more useful than the Latin name. Currently, convict cichlids
that occur in Costa Rica and Nicaragua are classified as Amatitlania siquia [6,7]. Most of the data
presented here were collected in study populations in clear low-order streams in Lomas Barbudal
Biological Reserve, Guanacaste, Costa Rica (Figure 1). A key comparison for the understanding of
how predation has shaped life history traits comes from additional data collected in Laguna de Xiloá,
a volcanic crater lake in Nicaragua and lab studies based on fish from this population.
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Figure 1. Map of Central America indicating the location of Lomas Barbudal Biological Reserve and
Laguna de Xiloá.

3. Mating System of Convict Cichlids in Costa Rican Streams

Parental care is tied closely to the mating system. Therefore, a discussion of parental care requires
some background information about the mating system. Spawning is seasonal. In Costa Rican streams,
spawning activity peaks in the dry season in March–April (Figure 2). The rainy season create spates
that scour out sediment and organic debris, and create turbid conditions and violent flows unfavorable
for maintaining parent–offspring contact. During the dry season these streams are fed by ground water,
flow is gentle and stable, and the water is clear. The dry season is also a time when dry forest trees
drop their leaves, which blow into the stream and create a burst of allochthonous production. Convict
cichlids engage in leaf-turning behavior to expose the underside of leaves for their own foraging, and
when guarding young, they increase leaf turning frequency to provide foraging opportunities for their
young [8].

Convict cichlids form monogamous pair bonds and jointly defend a nest cavity from competing
conspecific reproductive pairs. Within pairs, males are larger than females and this species shows
size-assortative mating (Figure 3). Biparental care is uncommon in fishes. For convict cichlids
in this study system, biparental care is more effective than uniparental care in defending against
brood predators [9], and allows pairs to defend two territories simultaneously: the mobile territory
surrounding the brood, and the fixed territory around the spawning lair. Brooding adults and their
offspring return to the lair each night, presumably to take refuge from nocturnal predators such as
catfish Rhamdia guatemalensis. During the day, broods roam about the stream bottom foraging on the
substrate. About once every 10 min, one parent, usually the male, leaves their partner and young to
return to the lair to chase away conspecifics that may be looking to establish themselves there.
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Figure 2. The number of breeding pairs actively guarding broods in the dry seasons of 1990 and 1991
within defined study areas in the Río Cabuyo and its tributary Quebrada Amores, located in and
adjacent to Lomas Barbudal Biological Reserve, Guanacaste, Costa Rica. Data from [9].
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Figure 3. (a) Male standard length (mm) versus female standard length in mated pairs of convict cichlids
by 1990 and 1991 in the pool (P) and stream (S) habitat in Río Cabuyo and Quebrada Amores. Large
males monopolize spawning sites and large females produce larger clutches leading to size-assortative
mating. (b) Overall mean ± SE length difference within a pair was 13.78 ± 0.59 mm (n = 149), and
intrapair difference differed significantly by site (F3,145 = 44.25, p < 0.001). Small females were not
found spawning in Quebrada Amores as often as they occurred in Río Cabuyo. Data from [10].

The young emerge from the lair at a size of about 4.5–5.0 mm standard length (SL) and remain
associated with parental protection until they are about 10 mm SL, which can take 4–6 weeks depending
on the growth rate of fry that varies from site to site [10]. After the young become independent and
disperse, the pair bond between the adults dissolves and the male may form a pair bond with a new
female and spawn again, often reusing the same lair (Figure 4). Males may spawn up to four times
within a 5-month dry season whereas most females spawn only once.

Because only the largest males monopolize spawning lairs and spawn repeatedly in them, the
operational sex ratio is skewed, and females compete intrasexually for access to males that possess a lair
leading to sexual dichromatism [11]. When not guarding young, males have a dull-colored olive-grey
background, often with a dull yellow hue, and dark gray barring. The black and white barring pattern
becomes highly contrasting (like the uniforms of prison convicts) when guarding young. Females have
three color phases. Similar to males, females are cryptic olive-gray (never with yellow hue) with grey
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barring when not reproductive, while parental females become highly aposematic with conspicuous
bright black and white barring (Figure 5). Gravid females become blackened lending high contrast for
gold flecks on the region of their abdomen that swells when gravid with eggs (presumably serving
as egg mimics?), yellow pigments in the webbing of the dorsal fin and blue pigment in the gular
region [11]. In addition to these color changes, black-phase females actively court parental males that
are paired with other females [12] and fight intrasexually for access to males that possess a spawning
lair (see video in supplementary materials). Pairs may form before selecting a spawning lair, but often
the male already possesses a lair from a previous bout of reproduction.
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Figure 4. (a) Seasonal mating frequency (Dec–May) for males and females for all sites combined. 28%
of males spawned more than once, 5% of females spawned more than once. (b) Mean ± SE number of
spawning lairs used as a function of seasonal mating frequency. Males often reused the same site for
sequential broods. Data from [11].
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Figure 5. Color phases of convict cichlids. Males alternate between drab olive-gray when non
reproductive as in the upper fish in (a), to contrasting black and white when defending young (female is
ahead of the male in this image) (b). Females have an additional color phase when gravid and courting
males in which the background color become black as in the lower fish in (a), image (c), which provides
a striking contrast for gold flecks on the belly and yellow and blue pigments in the fins and throat.
Photos of fish in hand by Brian Wisenden, photo of breeding pair (b) by Terence Lee.

Eggs are glued to the ceiling of the lair by the female and fertilized by the male. Females do most of
the direct care of the embryos while they remain glued to the ceiling of the lair and, in a few days, after
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they hatch into “free embryos” (eleuthroembryos or “wrigglers”) that form a trembling heap on the
floor of the lair. During this time the male patrols the vicinity outside the lair to repel intruders. After
a few more days, the wrigglers absorb their yolk and develop their fins and become free-swimming.
In Costa Rican streams they emerge from the lair at a size of 4.5–5.0 SL and begin exogenous feeding
on the substrate, all the while guarded by both parents. There is genetic [13] and morphological [14]
evidence that convict cichlids are socially monogamous but not necessarily genetically monogamous.
How the genetic structure of families may affect parental care has not been explored.

4. Parental Brood Defense

In Costa Rican streams, free-swimming young (“fry”) form a two-dimensional disc on the substrate.
Rarely do individual fry rise up into the water column, presumably because river current above the
boundary layer would sweep them away, and because interstitial spaces in the substrate are their
refuge from brood predators. Parents are positioned centrally, hovering a few centimeters above the
substrate and facing in opposite directions from each other, to provide 360◦ vigilance for the approach
of intruders. Not all intruders pose the same degree of threat to the offspring. Poeciliids, especially
Poecilia gillii, are common intruders but do not attack cichlid fry. The schooling characin Astyanax
fasciatus also pass over broods and are merely nudged away by the parents. Astyanax attack offspring
only if the brood is first disturbed by another cause, such as human manipulations of the brood, or
an attack by large adult Parachromis dovii. Once an Astyanax attack begins, 50 or more others join in
and overwhelm the defenses of the parents, which can disperse fry from the brood area, where they
either find their way home using visual and chemical cues [12,15] or join neighboring families [16].
Parental defense attacks are most frequently directed against juvenile cichlids. In the Río Cabuyo and
Quebrada Amores system, there were three species of cichlids: convict cichlids, a sand-sifting species
Cribroheros longimanus, and the piscivorous P. dovii. Juvenile P. dovii were attacked from the greatest
distances from the brood, suggesting that parents consider them as the most serious threat to their
young (Figure 6). Indeed, juvenile P. dovii were often observed sneaking up on broods by creeping
stealthily forward under the cover of leaf litter and hiding behind pebbles to stage an ambush.Diversity 2020, 12, x FOR PEER REVIEW 6 of 15 
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Figure 6. Parental brood defense attacks per 10 min observation period (n = 840 trials) against
the characin Astyanax fasciatus (AST), Poecilia gillii (POEC), juvenile convict cichlids (Juv CC), adult
convict cichlids (Ad CC), sand-sifter cichlid Cribroheros longimanus (Long), or juveniles of the piscivore
Parachromis dovii (Dovii). Line represents overall frequency distribution of parental attacks against
brood predators. Data from [10,17].
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In spite of parental vigilance and brood defense, predators take their toll and reduce the number
of young in a brood, and ultimately, the number of broods that persist with surviving offspring to fry
independence. Brood success (at least one fry surviving to independence) is strongly linked to habitat
(Figure 7a). In shallow sections of the streams (i.e., “stream” sites), brood survival was relatively high
(48%) compared to broods reared in the deeper “pool” sections of the river (15%). Contributing factors
to this disparity may be that P. dovii spawn in the deep sections of the rivers, thus their juveniles are
more abundant there than in the shallow sections of the streams, and because deeper sections of the
river are darker and parental detection of approaching brood predators may be impaired under these
conditions. For those broods that had young survive to independence, the final number of young
averaged 27 despite widely ranging starting numbers, parent size and habitat (Figure 7b).
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Figure 7. (a) Percentage of broods surviving at various intervals between emergence from the lair until
independence from parental care after the young reach 10 mm SL. (b) Number of young in broods
at these same intervals for each site. Although there were site differences in brood size initially, all
site-years converged on an average of 27 fry at independence. Solid symbols, pool habitat; open
symbols, stream habitat. Circles, Río Cabuyo; triangles, Quebrada Amores. Solid lines, 1990; dashed
lines, 1991. Data from [9].

The convergence of offspring number of successful broods to 27 young suggested that there may
be constraints on maximum brood size imposed by the logistics of brood defense (Lack’s Hypothesis).
This was confirmed by a field manipulation experiment (Figure 8a). This experiment also demonstrated
that per capita growth rate of the young was inversely proportional to the number of young in the
brood, suggesting that the logistic constraint was the area defined by the effective radius of parental
brood defense (Figure 8b). In large broods, young were forced to crowd into the safe area defendable
by the parents and therefore foraged less than young in small broods.
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Figure 8. (a) Lack’s hypothesis is that maximum brood size is limited by the number of offspring that
can be reared to independence, not by the physiological capacity to produce eggs. Naturally-occurring
broods in the Río Cabuyo were either left unmanipulated (control) or augmented with extra fry to have
150 young. Experimental broods were unable to sustain numerical advantage of the manipulation by
the end of 20 days. (b) Individual growth rates of larvae in experimental broods were significantly
lower than larvae in control broods due to crowding within the parentally-defended area and therefore
experienced increased competition for food. * p < 0.05, *** p < 0.001. Data from [18].

5. Broods of Mixed Parentage and Intraspecific Brood Adoption

Recent genetic analyses of convict cichlid broods in Río Cabuyo show evidence of multiple
maternity, multiple paternity, and wholesale adoption of young unrelated to either parent providing
care [13]. An alternative “sneaker” male morph has been observed in Laguna de Xiloá in Nicaragua [14].
Clearly, the mating system of this species is one of social monogamy but not genetic monogamy.
In addition to multiple parentage, convict cichlids also add offspring to their brood during the
free-swimming stage while the young are being guarded [19]. In tracking the number of young in
individual broods over time, it was often observed that the number of young in some broods increased
instead of decreasing over time. In these cases, and in others in which the number of young declined,
there appeared within the brood two distinct size classes: one that tracked the growth trajectory of the
young “related” to the adults providing care, and additional young that were smaller than the young of
the host family (Figure 9). Adoption was not a case of misdirected parental care because experimental
addition of young that were similar in size or smaller than host young were always successfully
adopted, whereas young larger than host young were always rejected [19]. Close examination of
natural adoption events revealed that size discrimination occurred only until host young were between
7 and 8 mm SL, and thereafter there was no size bias (Figure 9).

We hypothesized that size-bias in brood adoption was driven by differential swimming
performance between small and large young. Predation trials in the lab on broods of mixed sized
demonstrated that predators preferentially consumed small fry (Figure 9) and a brood manipulation
experiment in the field confirmed that parents that adopt additional young benefit from increasing
the survival rate of their “own” young through statistical dilution of predation risk, and through
differential predation on smaller adopted young [20].
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Figure 9. (a) Size-biased conspecific adoption of broods from neighboring families. Line is y = x. When
young are adopted from neighboring families, parents accept young that are smaller than their own
and reject those that are larger than their own (data not shown), until the host young are larger than
8 mm SL. This raised the possibility that adopted young are being set up as targets for predators to
spare predation on host young, which was confirmed in a subsequent field experiment. (b) Hunting
success of juvenile convict cichlids and juvenile P. dovii on groups of convict cichlid fry of mixed sizes.
Small fry were eaten significantly more often than large fry. Data from [18].

6. Ontogeny of Antipredator Competence

Burst speed of young at different lengths showed that young became faster swimmers as they grew
and developed, but that the rate of increase was not linear (Figure 10). Post-hoc pairwise comparison
tests showed that swimming performance rapidly improved after the young reached 7 mm SL, which
coincides with the size at which parents no longer discriminate on the basis of size when they adopt
new young into their families.Diversity 2020, 12, x FOR PEER REVIEW 9 of 15 
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Figure 10. (a) Maximum velocity (m·s−1) and (b) acceleration (m·s−2) for cichlid fry of lengths 5 to 9 mm
SL, from parents from Río Cabuyo (RC) in Costa Rica and from Laguna de Xiloá (LX) in Nicaragua.
Letters above bars indicate post-hoc pairwise comparison tests across fry sizes within each site. Data
from [17,21].
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7. Timing of Ossification of the Larval Skeleton from Cartilage to Bone

The skeleton of larval fish is cartilaginous at the time of hatching and then becomes ossified into
bone in the transition from larvae to juvenile. Bone is stronger than cartilage and leads to more forceful
swimming propulsion. Larvae that had been cleared and stained with alcian blue (cartilage) and
alizarin red (bone) allowed us to quantify the timing of the transition from cartilage to bone (Figure 11).
Ordination of the resulting data matrix revealed that rapid calcification of the skeleton occurred at
around 7 mm SL, which coincides with changes in swimming performance, differential predation
and discriminatory brood adoption on the basis of size (Figure 12). Taken together, these data show
that predation on larval convict cichlids exerts selection pressure on the timing of developmental
events, which affect the growth and survival rates of the young, and shapes the evolution of parental
brood defense.
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Figure 11. (a) Cleared and stained larvae and juveniles with alcian blue (cartilage) and alizarin red
(bone) for Río Cabuyo fish sized 5–9 mm SL. (b) Each specimen was imaged at high magnification so
that each of 111 skeletal elements could be scored for degree of ossification on a scale of 1–4. Photos by
Tony Stumbo. Data from [17].
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Figure 12. (a) Non-metric dimensional scaling (NMDS) axes for 111 bones× 125 larvae from Río Cabuyo.
There was no variation in 5 mm fry (not shown). Pairwise comparisons revealed that ossification of
6 mm fry < 7 = 8 = 9 mm SL fry. (b) NMDS ordination of images from larvae from lab-F1 adults from
Laguna de Xiloá. Again 5 mm SL fish contained no variation (not shown), but the conspicuous shift in
ossification was between 8 mm fry and 9 mm fry. Data from [17,21].
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8. Comparison to Convict Cichlids in Laguna de Xiloá, Nicaragua

Data from Costa Rican streams indicate a correlation among predation pressure, larval development
and parental care. Laguna de Xiloá is a volcanic crater lake in Nicaragua that differs from Costa
Rican streams in several ways. It is lentic, it is not shaded by riparian vegetation therefore there is
rich autochthonous production, and there is a diverse fish community including the sleeper goby
Gobiomorus dormitor, which is a specialist predator on the larvae of cichlids. We collected and preserved
larvae from convict cichlid broods from Laguna de Xiloá for analysis of ossification. Ordination of
those data revealed that the timing of ossification was different than for fishes in the Rió Cabuyo system,
being delayed to between 8 and 9 mm SL (Figure 12). Adults collected from Laguna de Xiloá and bred
in the same laboratory tanks used to produce data for the Costa Rican population (i.e., common garden),
showed that larvae from Nicaraguan parents showed delayed onset of swimming performance relative
to Costa Rican fish. Maximum velocity and acceleration did not noticeably improve until the young
were larger than 8 mm SL (Figure 10), which matches well with data on skeletal ossification, and
presumably would continue to improve beyond 9 mm SL.

9. Correlation of Parental Brood Defense and Brood Predators

Growth rates of larvae showed that there is a limit to the area that can be effectively defended
by two adults. Interacting with this constraint is the swimming speed of the young that enable
them to evade an attack by a brood predator. When the young are small and weak-swimming, they
occupy a small area that can be effectively guarded. As the young develop and improve in swimming
performance, the area occupied by the brood should be expected to expand to reduce intrabrood
competition for food. Measurements of brood diameter in the Rió Cabuyo and Laguna de Xiloá confirm
that brood area does indeed expand as the young grow and develop into faster swimmers [21].

Change point analysis of brood radius indicates that in the Rió Cabuyo brood radius expands
until the young are about 6.45 mm SL, and then levels off, whereas in Laguna de Xiloá brood area
remains tight and cohesive until the young reach 7.9 mm SL and then expands in radius thereafter
(Figure 13). In both cases, the switch points coincide with site-specific switch points in swimming
performance and skeletal ossification. The reason(s) for why brood radius increases then plateaus in
Rió Cabuyo but remains small and only later expands in Laguna de Xiloá is not known, but is likely
due to a combination of relative predator pressure and relative productivity. Food is richly abundant
in Laguna de Xiloá and so too is predator density and effectiveness. The best strategy for larvae (and
their parents) in Laguna de Xiloá may be to stay huddled in a tight group for minimum risk to brood
predators. They can afford to use this strategy because algal mats and associated epiphytic fauna
are abundant in the shallow waters of Laguna de Xiloá where our data were collected. In contrast,
the Rió Cabuyo is a low-order stream shaded almost completely by riparian canopy even in the dry
season, thus food availability is less abundant. That, in combination with a relatively benign predator
community, may favor early expansion of brood radius and therefore early ossification of the skeleton.
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Figure 13. The radius of broods being guarded in Río Cabuyo (circles) and Laguna de Xiloá (triangles)
from time of early emergence from the spawning lair to the point of independence from parental care.
Change-point analysis revealed nonlinearity occurred at SL = 6.45 in Río Cabuyo fish and SL = 7.9
for fish in Laguna de Xiloá. These switch points coincide with changes in skeletal ossification or the
young, ontogenetic shifts in swimming performance and changes in parental adoption behavior. Data
from [21].

10. Discussion

Brood defense is, in part, a matter of geometry (Figure 14). Risk of predation increases with
distance from the brood center where the parents are positioned. The zone circumscribed by a radius
of two body lengths is a zone of intimidation (zone A in Figure 14). Few attacks occur within this
central area because intruders almost never approach the brood center. Aposematic coloration adopted
by convict cichlids during the parental phase presumably help the young track the position of their
parents, but they also warn intruders of the presence of highly aggressive fish.

Beyond a radius of 10 cm, parental attack rates quickly escalate, peaking for attack radii from 25
and 45 cm (zone C in Figure 14). Attacks with radii larger than 25 cm are usually a quick burst out to
intercept the intruder followed by a quick return to the brood center because driving a predator away
requires that the parent must temporarily leave their brood vulnerable to attack from the opposite
direction. Parents differentially attack species that pose a greater threat to the young, namely juvenile
conspecifics and juvenile P. dovii. Juvenile convict cichlids are opportunistic predators, numerically
abundant in this system and attacked frequently. P. dovii are piscivores and although not common in
this system, judging by attack distances, P. dovii represent a greater threat to cichlid fry than conspecific
juveniles do.

Zones of parental protection constrain how far fry can stray from their parents while foraging.
There is a trade-off for young between foraging (growth) and risk of predation. This trade-off shifts as
swimming performance improves. Brood diameter increased with fry SL independent of the number
of young in the brood [17]. Note that brood radii for convict cichlid broods in the Río Cabuyo do not
extend beyond 20 cm until after the skeleton has fully ossified. In Laguna de Xiloá the relationship
between development of the young and brood radius is the inverse of the pattern observed in the Río
Cabuyo. Young in both populations remain in a tight shoal until they attain a length that coincides
with skeletal ossification and then begin to stray from their parents. Larval and juvenile convict
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cichlids in Laguna de Xiloá remain with their parents until they have grown much larger than typical
size-at-dispersal observed for broods in Río Cabuyo. This may reflect greater threat of predation and/or
richer food, or other unmeasured parameters in the laguna.
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Figure 14. Geometry of brood defense in convict cichlids in Río Cabuyo that incorporates data on
parental attack distances, brood radius data and the trade-off for fry between maximizing foraging
while minimizing risk of predation. A, zone of intimidation where physical presence of parents deters
approach of brood predators. Very small fry from Río Cabuyo stay here and small and medium-sized
fry from Laguna de Xiloá stay here; B, transition zone where fry can expand into when their swimming
performance and predation risk warrants it; C, zone of interception to maintain a predator-free buffer
around the brood; D, zone of escalated attack, particularly for juveniles of the piscivore P. dovii. The
evolution of parental care in cichlids is a three-way process between brood predators, ontogeny of
antipredator competence in the fry, and parental area defense.

The direction of change in ontogenetic timing in response to predation could occur in either
direction. If predation selects for fast escape responses early in development, then one might predict
earlier onset of calcification. A second possibility is that intense predation risk selects for extended
periods of tight shoaling behavior instead of individual escape responses, allowing young to allocate
more resources into growth in physical size rather than to ossification of skeletal components. There is
support for the latter hypothesis from population differences in pumpkinseed sunfish (Lepomis gibbosus),
in a population with faster growth rates showing delayed ossification of cranial bones [22]. Similarly,
medaka (Oryzias latipes) from relatively fast-growing populations have fewer skeletal supports for fins
and poorer swimming performance that same-sized fish from slow-growing populations [23]. It seems
likely that convict cichlids in Laguna de Xiloá have been selected for fast growth and therefore delayed
skeletal ossification until they have attained a relatively large size compared to convict cichlids in
Río Cabuyo.

11. Conclusions

Convict cichlids in Rio Cabuyó and Laguna de Xiloá are different from one another. Divergence in
the timing of skeletal ossification leads to divergent behavioral phenotypes of larvae. We know divergent
development is not a result of developmental plasticity or food availability because the ossification
data were derived from lab-reared adults held under identical conditions (i.e., a “common garden”).
Population differences reflect genetic differences, not environmental ones. Skeletal ossification changes
swimming performance and therefore vulnerability to brood predators, which in turn alters selection
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on parental care behavior in terms of brood defense and fine-grain decision-making, such as when to
accept or reject new young that join their brood.

Allopatric population divergences are consistent with incipient speciation. Reproductively,
isolation occurs by mechanisms of foraging competitive exclusion and reproductive behaviors including
female mate choice, depth and timing of spawning, e.g., [24,25]. Laguna de Xiloá is well known for
several examples of sympatric speciation of other cichlid species [26–28], a much younger evolutionarily
radiation than the celebrated radiations that have occurred in cichlid species of the rift valley lakes in
East Africa. Species radiations in cichlids in Laguna de Xiloá, and African rift valley cichlids radiated
due to sexual selection or ecological niche partitioning. In contrast, it seems very likely that the cause
of divergence in convict cichlid populations in Costa Rica streams and a Nicaraguan lake is predation.
Predation is known to lead to population divergences in other systems (e.g., [29–32]). However, the
interacting roles of larval development, larval antipredator competence, and parental care in driving
species diversity is not well explored (but see [33,34]). These traits could be added to the list of traits
that cause reproductive isolation through suppression of hybrid crosses.

Brood defense is maintained by kin-selected benefits to parents derived from increased offspring
survival. Across cichlids, patterns of parental care vary widely in terms of duration of care, whether
care is uniparental, biparental or multigenerational, and whether eggs are attached to the substrate or
incubated orally [35]. But in every case, predation on eggs, larvae and juveniles is the driver of selection
for these behaviors and physiological mechanisms. Cichlids offer a remarkably diverse system with
which to explore the relationship among predation, the evolution of parental care and species diversity.

There are several potentially fruitful avenues for future study to explore the extent to which
the phenomena described here apply to other populations and other species. The data presented
here are based on two populations that differ in many ways, including predation pressure on fry.
Inclusion of additional populations will increase resolution of the causal relationships between brood
predators, food, temperature, spawning site availability, adult density, etc., that may all shape patterns
of parental care. Non-cichlid species that provide care for their young offer an opportunity to test these
relationships independent from phylogenetic effects. Ultimately, a goal of this research would be to
develop a quantitative framework that integrates life history traits with the environmental factors that
shape them.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-2818/12/4/136/s1,
Video S1: Video of female-female intrasexual contest over a male.
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